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PREFACE

This report on the '"Analysis and Tests of Mylar Falling
Spheres' was primarily the work of F. F. Fischbach. Dr. H. F.
Allen assisted Mr. Fischbach with the "Viper-Dart Sphere Test
Program. F. L. Bartman assisted in the calculations and writing
of some parts of the section ""Thermal Studies of Falling Spheres"

and edited the report in Mr. Fischbach's absence.




ABSTRACT

The analysis and tests of mylar falling spheres described herein
contain results on several theoretical and experimental factors related
to the success of the falling sphere program. A careful study of the
literature and experimental methods used to obtain sphere drag coefficients
has led to recommended tables of sphere drag coefficients. Studies of
flight experience and theoretical studies of initial sphere temperatures,
isopentane evaporation, radiation effects, convective heat transfer to the
atmosphere, heat transfer within the sphere and chemical reaction on
the sphere surface provide information which may possibly be used in
future work to compute a realistic reliable temperature-time history of
falling spheres. The results of the ""radiation effects' calculation suggests
that an aluminized sphere has greater radiant energy absorption character -
istics in daytime for evaporation of the isopentane used for inflation. There
is no evidence to indicate that sphere failures are due to insufficient heat
for evaporation, however. The results of the Viper-Dart sphere test
program suggest that thermal problems during the rocket ascent or during
sphere ejection and inflation may be the principal cause of flight failures
of falling spheres. Remedies are suggested. Component improvement
recommendations are made for existing and future Viper-Dart-Robin pay-
loads. Recommendations are made for improvement of the 1970 data

analysis program.
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dqy (1-2)

EX

= the spectral solar irradiance, watts. cm_z- #m

Symbols

area, cm
orifice coefficient

orifice discharge coefficient (empirically determined)
local friction coefficient

specific heats at constant pressure and constant volume,
respectively

the Stanton number

sphere diameter, cm or meters

an element of area on the earth's surface
an element of area on the mylar sphere

the rate of energy transfer from an element of area da,on
earth to an element of area da2 on the mylar sphere

strain of mylar

Young's Modulus of mylar, 550. 103psi

frequency of points

shredding frequency, cps.

acceleration of gravity, cm. sec.

Grashof number

altitude of mylar sphere above the earth's surface
flux of radiation leaving the earth, watts- cm?.um”!

-1

flux of thermal radiation emitted by the earth, watts. cm_z- um_l

heat transfer coefficient

parameter used to define portion of area of falling sphere which is
contiguous to the boundary layer

= the spectr_%l intensity of radiation leaving the earth,

watts- cm “- ster~1l. ,um'1
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= B B

=

the Spectr_'gl il’ltel_’_lfity oflthermal radiation leaving the earth,

watts cm “-ster “.um”
absorption coefficient

the thermal conductivity of a fluid
mass flow rate, gr. sec

Mach number

number of points
number density, cm_:?
number of points
Nusselt number = nx/k

pressure, mb.

the Prandtl number

= the rate of heat flow

the rate of heat flow at the wall

= rate of transfer radiant energy at wavelength A

Reynolds number (also Re)

radius of mylar sphere, cm.

gas constant for a perfect gas, ergs. OK_I-mol._1
distance from earth to mylar sphere

radius of the earth

hoop stress

Strouhal number (Fd/V,)

time, sec.

temperature, °K




T = mean temperature (time average) for a brief period
= initial isopentane temperature
= recovery temperature

T

Ty

TS = initial mylar temperature
TW = mean wall temperature

Tw. = mean insulated wall temperature
ins
Too = free stream (local) temperature
V = volume, cm
v = velocity
v = mean velocity (time average) for a brief period
Vo © free stream velocity
Wh (T) = The radiant emittance of the mylar material at mean temperature T.
x = coordinate along surface in direction of free stream
X = dimensionless time ratio
Y = "unaccomplished' temperature change
z = coefficient in viscosity power law
Z = altitude

a GHLTN Ty S spectral absorptivity, emissivity, reflectivity and transmissivity,
respectively

a, B = integration constants

B = the solid angle of the earth as viewed from the sphere, steradians

C

¥ = EE = ratio of specific heats

v
= thickness of layer of liquid isopentane, cm.

AT = temperature increment, °K
61 = zenith angle of a ray at the earth

92 = zenith angle of a ray at the mylar sphere

xi




A= wavelength, s m.

K = the viscosity of a fluid

P = density, gr cm

py= bi-directional reflectance of earth's surface

Po ™ free stream mass density

o = variance
T = mylar thickness
Tx = transmissivity of mylar of thickness X

T = the shear stress
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INTRODUCTION

The passive inflatable falling-sphere technique has been one of
the most reliable, economical and accurate methods of measurement of
upper atmosphere structure. In this experiment a sphere made of very
light material, inflated after ejection from a small inexpensive rocket,
is passively tracked by radar to determine drag acceleration and thus
the atmospheric structure parameters density temperature, pressure and
wind.

Present designs have been frequently subject to a type of failure in
which the sphere has collapsed before reaching the design deflation altitude.

The purpose of the present investigation has been to consider and
analyze the sum total of accumulated flight experience, ground testing and
physical theory applicable to the falling-sphere technique in order to pos-
sibly obtain an explanation for these failures.

In addition a complete review and evaluation of sphere drag coef-
ficient data available up to but not including ballistic range data obtained
at the Arnold Engineering Development Center in 1970 has been carried out.

This report on the results of the study is presented in two parts
plus three Appendices. Conclusions and recommendations are presented
at the end of each part or appendix.

The survey of sphere drag coefficient data is presented in Part I.
The scope of the investigation and method of data available are described.
Recommended drag coefficient data are given in tables at the end of this

part of the report. Comparisons with other sets of drag coefficient data

previously used with the falling-sphere experiment are made on pages 4

and 5.




The "Inflation Analysis of Mylar Falling Spheres" is contained
in Part II. In separate sections an introduction is provided, and flight
experience, ground test experience, thermal studies, the suitability of
isopentane as inflatant and a sphere leak analysis are considered. A
summary of the logical analysis, results and conclusions are contained
in the last section of this part on pages 113 to 117.

Appendix A contains a complete description of ground tests and
altitude-chamber tests of the Viper-Dart Sphere test program carried
out as a part of this study. The conclusions obtained as a result of this test
program are given on pages 142 to 144.

In appendix B recommendations for balloon system component im-
provements are made for Viper-Dart-Robin payloads now in inventory,
for future procurements and for a new design.

An appraisal of the 1970 program for Robin sphere data processing
is given in Appendix C. Results and conclusions of this study are given on

pages 157 to 167.
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PART 1 - A PRELIMINARY SURVEY OF THE DRAG COEFFICIENT
OF SPHERES AS APPLICABLE TO THE
FALLING-SPHERE TECHNIQUE FOR ATMOSPHERIC DENSITY

. F. Fischbach
I. Introduction (F L= ch)

The drag coefficient of a falling sphere has been investigated for the
purpose of determining the applicability of the many experimental data to
the Viper-Dart-Robin technique.

The bulk of the historical data is confined to the incompressible flow
region. These data are important because a considerable portion of the
falling-sphere trajectory lies in the region of low Mach number.

For the portions of a typical flight which have transonic and supersonic
velocities the drag coefficient is determined from a comparatively small
number of experimental results. Fortunately, the experimental results
have been relatively consistent.

This study has been largely an attempt to assess all results to date,
and to evaluate the merits of different experimental methods in terms of
their applicability to the inflated mylar sphere technique.

II. Scope of Investigation

The incompressible flow regime suffers no shortage of experimental
results. The drag coefficient of a sphere in low-speed flow was one of the
classic investigations of aerodynamic theory and occupied the attention of
such investigators as Sir Isaac Newton, Lord Kelvin, Prof. G. Eiffel, and
Prof. Prandtl. As such, one might assume the investigations to have been
fully definitive in the sense of determining a unique drag coefficient function.
Such was not the case. Experimental errors obscured the free flight drag

function and as of today they are not completely resolved.




The original efforts between 1900 and 1932 were based entirely on
wind tunneling or from free drops from towers, airplanes, or in water (or
other liquid). Recent measurements made in ballistic ranges have over-
come many inherent difficulties of the earlier techniques. The present
results include some but not all of the current ballistic range measurements.

The compressible flow regime between low Mach numbers and Mach
1 is covered by adequate measurements. At Mach 1 measurements are
almost entirely lacking. At speeds above Mach 1 and below Mach 2.5 more
measurements are required. Above Mach 2.5 very little Mach dependence is
seen.

The present investigation has developed an interim drag coefficient
recommendation based upon all measurements from 1900 through 1969.

In the low-speed regime the ninety-six references listed below furnish the
basis for the table. For the high-speed regime the table is based upon
fourteen references, also listed below.

A large number of experimental results have been obtained by a
variety of methods, by many investigators, over a period exceeding 250 years
for the drag coefficient of falling spheres. It has not been possible to find
an objective method for synthesizing this data. Considerable subjectivity
is required in the preparation of a single empirical function to describe the
drag coefficient data. We will describe the method of attack utilized by the
investigators:

1. Considerable effort was put forth to obtain an absolutely complete
set of original references cited in the world's scientific literature. Specifi-

cally avoided was the utilization of data ascribed by one author to a prior




author. All papers and reports were examined in their original form with
the exception of Russian and German papers translated and published by
the U.S.N. A.C. A. Even in these cases the datum points themselves (not
the accompanying descriptions) were checked in detail.

The present investigators failed to obtain the following original
papers:

Costanzi 6, 7
Loukianot 45

Data ascribed to these three references by Prandtl, Wieselsberger,
and Riabovchinsky have been utilized but viewed with considerable reservation.

2. All investigators' data were placed in comparable parametric
context. This involved recomputing the Reynolds' Number in many cases,
where the original papers used a different parameter (usually associated
with a different basis of characteristic length).

3. Those data found to be in error due to experimental problems
completely and satisfactorily explained by subsequent investigations were
given almost no weight.

4. Summaries, surveys, and reviews were found often to contain
plotting errors, translation errors, and parametric errors. Even more
disturbing was the usual perpetuation of such errors from one review to
another, even by otherwise very careful investigators. Accordingly such
summaries were accorded little weight. This was the raison d'etre for
examination of only original documents.

5. Being thus left with a lesser number of fully credited datum points,
these points were weighted according to a subjective formula appraising

these particulars:




a) Consistency between investigators using different methods

b) Consistency (internal) between investigations by same method

c) Applicability of experimental method to free-falling spheres

d) Consistency with other investigations at slight overlap or

slight extrapolation of Reynolds Number

e) Internal random error as evidenced by standard deviations

reported

Attacking the problem in this manner, the most decisive investiga-
tions for our purposes were those of Allen, Lunnon, Shakespear, Riabovchinsky
Goin & IL,awrence, Flachsbart, Wieselsberger, Aroesty and Ashkenas. How-
ever, in no way was consideration limited only to those data.

The recommended drag coefficients given here take into account all
evidence available at the beginning of the contract period. These exclude
the bulk of the ballistic range data gathered by AEDC in 1970.

These recommended coefficients are generally within 2% of values
used by University of Michigan programs subsequent to 1968. They are
generally with 4% of values used by University of Michigan investigators in
1967 and current ROBIN programs. They are generally within 1 to 2% of
values published in 1970 by AEDC. They are in serious disagreement, (from
5% to 10%)at speeds of Mach Y and above, near Mach 1 and also at low Reynolds
Numbers, with values used by the ROBIN program of 1965 and the University
of Michigan investigations of 1965 and 1966. These latter two programs
used drag coefficients based on the Heinrich experiments 21, 22 now be-
lieved to have suffered from considerable experimental error, particularly

in trends regarding variation with Mach Number only and Reynolds number




only. Accordingly, temperatures in the rapid deceleration regions and
at low altitudes were more detrimentally affected than density alone.

The meeting of falling sphere investigators at NASA Langley
Research Center in September 1970 resulted in the adoption of AEDC
ballistic range data by the presently experimenting scientific community.
Australia was not represented but is expected to join the agreement.

The present investigators note that while exhibiting excellent in-
ternal consistency, small standard deviations, and great Mach Number
resolution near Mach 1, no proof of the absence of systematic error in the
AEDC data is possible. In this regard, comparison to other methods, no-
tably Allen and Flachsbart - Wieselsberger at low Mach Numbers, and
Aeroesty & Ashkenas at High Mach Numbers, indicate that important
systematic errors are improbable. The Allen work, done 70 years prior,
nevertheless suggests that in free flight in the upper atmosphere drag
coefficients could be generally lower by about 1%. A repetition of Allen's

method would be most interesting and certainly not expensive.




III. Interim Drag Coefficient Value Recommendations - Supersonic

Reynolds Mach Number
Number
1.0 1. 2 1. 4 1.6 1.8 2.0 2.5
200 1.150 1.193 1, 232 1. 264 1. 290 1. 310 1. 340
300 1, 083 1,133 1.172 1. 204 1. 230 1. 250 1. 280
500 1, 017 1. 067 1.106 1.138 1.164 1.184 1. 214
700 . 956 1. 031 1. 070 1,102 1,128 1,148 1,178
900 . 906 1. 006 1. 045 1. 077 1.103 1.123 1.153
1, 000 . 899 . 996 1. 035 1. 067 1. 093 1,113 1.143
1,500 . 872 . 960 . 999 1. 031 1. 057 1, 077 1.107
2,000 . 853 . 933 . 972 1. 004 1. 030 1. 050 1. 080
3, 000 . 827 . 903 . 942 . 974 1. 000 1. 020 1. 050
4, 000 . 817 . 883 . 922 . 954 . 980 1. 000 1. 030
5,000 . 806 . 870 . 909 . 941 . 967 . 987 1, 017
6, 000 . 800 . 859 . 898 . 930 . 956 . 976 1, 006
7,000 . 794 . 852 . 891 . 923 . 949 . 969 . 999
8, 000 . 790 . 843 . 882 . 914 . 940 . 960 . 990
9,000 . 780 . 838 . 877 . 909 . 935 . 955 . 985
10, 000 .174 . 833 . 872 . 904 . 930 . 950 . 980
15, 000 .174 . 833 . 870 . 889 . 915 . 935 . 965
20, 000 .778 . 835 .87 . 890 . 913 . 920 . 950
30,000 . 7182 . 837 . 873 . 891 .91l . 920 . 950
40, 000 . 7186 . 839 . 876 . 891 . 910 .920 . 950
50, 000 . 794 . 842 . 880 . 891 . 910 .920 . 950




IV. Interim Drag Coefficient Value Recommendations - Subsonic

Reynolds
Number
200
300
500
700
900
1, 000
1,500
2, 000
3, 000
4,000
5, 000
6, 000
7,000
8, 000
9,000
10, 000
15, 000
20, 000
30, 000
40, 000
50, 000

0

. 680
. 590
. 510

. 490
. 460
. 444
. 412

.392
.374
. 370
. 367
.364
. 3617
.370
. 376
.382
.390
.398
. 406
. 418

. 430

Mach Number

. 20 .33
.480 . 485
. 460 . 473
.422 . 436
.400 | 417
.380 .400
.374 .393
.373  .393
.373 .394
.378 .398
.38l . 402
.387 .408
.395 .4l12
.405 . 425
. 413 . 433
. 419 .438
.434 . 458
. 448 . 472

. 46

. 507
. 494
. 454
. 435
. 418
. 413
. 412
. 415
. 419
. 425
. 432
. 437
. 448
. 454
. 460
. 476
. 491

.60

. 545
.532
. 491

. 469
. 449
. 441

. 440
. 440
. 443
. 446
. 451

. 457
. 464
.474
. 484
. 500
. 516

.15

. 606
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PART 2 - INFLATION ANALYSIS OF MYLAR FALLING SPHERES
by F. F. Fischbach

I. Introduction

A. Background

The falling-sphere technique has long been employed to determine
atmospheric density through the measurement of drag acceleration.
Presently, the most important designs are those in which an inflatable
sphere is made of very light material, inflated after ejection from a rocket,
and passively tracked by radar to determine drag acceleration.

There are three fully-developed designs for inflated sphere systems.
One is launched on a routine operational basis. The other two are not
used routinely but have been flown enough to provide considerable performance
data.

Inflation of the sphere in all systems is caused by the evaporation
of isopentane which is carried in a small aluminum capsule within the
sphere. At the time of ejection the capsule is opened and subjected to a
very low pressure. This causes evaporation and consequent pressure
within the sphere on the order of 15 mb. Once the sphere has fallen to an
altitude where the ambient pressure equals the internal pressure, the
sphere collapses rather quickly with respect to altitude, say l km., and
presents a much higher drag shape to the atmosphere.

The present systems while accumulating much experience have been
subject frequently to a certain type of failure, namely, that the sphere has

collapsed before reaching the design deflation altitude.
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At first this type of failure was considered merely annoying because
it was assumed that only the lowest few kilometers of atmospheric data would
be unavailable. However, further analysis showed that the type of failure
was important to all of the data, thus if the inflatant compound were all or
partly missing at the time of launch, or if some leaked out of the sphere
during the fall, not only would the sphere collapse too high but the mass
assumed in the drag calculation would be incorrect at all altitudes.

Since the mass is directly proportional to the calculated density, the
size of the potential error is seen to be up to 16%.

There are many potential explanations for early deflation other
than one involving mass loss, therefore, it is urgently required to analyze
the sum total of flight experience, ground testing and theory for possibie,

probable, or certain explanations.
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B. Method of Analysis

The question of inflation of the Arcas-Robin was the subject of
a former analysis (Ref. 1). This together with the design and develop-
ment analyses of the Judi-Dart-Robin and the Viper-Dart-Robin (Refs.

2 through 8) furnish valuable bases and background, particularly with
regard to ground and chamber tests.

Flight experience with the Arcas-Robin will be used as well
as that from the Judi- and Viper-Dart-Robins, the Universi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>